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A critical analysis of some fundamental differences in 
gauge approaches to gravitation 

I M Benn, T Derelit and R W Tucker 
Department of Physics, University of Lancaster, Lancaster, England 

Received 23 June 1981 

Abstrsd. Static spherically symmetric solutions of a particular model of gravitation, 
including quadratic curvature and torsion terms, are discussed and compared with those 
found earlier in a model described by a different action. Considerable emphasis is placed on 
a Lorentz group covariant formulation of the models and the role of local diffeomorphisms 
of space-time carefully distinguished from the structure group for gravitation. We argue 
that the ‘modified PoincarC gauge’ approach of Hehl and co-workers mixes these concepts 
and that their model for gravity is dynamically specified by a locally Lorentz invariant 
action. Furthermore we demonstrate the logical distinction between a space-time trans- 
formation generated by symmetries of particular solutions to a model and gauge covariant 
symmetries that apply to all solutions. 

1. Introduction 

Since gauge theories seem important for the description of fundamental interactions it 
appears natural to exploit any gauge structure present in theories of gravity. Different 
authors, however, adopt different criteria in order to determine what properties a 
theory should possess in order for it to qualify as a gauge theory and there appears to be 
no consensus on what the gauge group should be. In a series of articles (Benn et a1 
1980a, b, 1981, Dereli and Tucker 1980, 1981a, b) we have formulated gravitational 
interactions in terms of an SL(2, C) structure group. Our approach entails the use of an 
SL(2, C) Lie algebra valued gauge field, gauging the covering of the Lorentz group that 
acts on local orthonormal frames of space-time and the assiduous use of intrinsic 
tensorial concepts. In this paper we show that modern differential geometric con- 
structions, such as the linear frame bundle, are ideally suited to keep in focus a number 
of distinct concepts that can be easily blurred if one works entirely with tensor 
components on the space-time manifold itself. We explain why, and in what sense, 
gravitational interactions as we currently understand them should be formulated in 
terms of the local Lorentz gauge group rather than the PoincarC group or its 
modifications. This gauge structure is carefully distinguished from the coordinate 
invariance that all physical theories, not only those describing gravity, should exhibit. 

Very soon after Einstein’s announcement of general relativity, Cartan (1922) 
pointed out an important mathematical generalisation: the inclusion of space-time 
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torsion. Since then many investigators, including Einstein himself, have sought to 
clarify the physical role of this particular generalisation. After the discovery of intrinsic 
spin it appeared even more natural and few would doubt the economy of describing 
gravitation in terms of independent metric and connection structures in the presence of 
self-gravitating fermions. 

A model of gravity that involves quadratic combinations of curvature and/or torsion 
forms in the action (see e.g. Thirring 1978) has also attracted considerable attention in 
the literature, particularly when the torsion is not assumed to be a priori zero. In view of 
the dilemmas posed by the singularity theorems of Einsteinian gravity it may be 
worthwhile to study more closely these classical models. 

In a recent paper by Benn et af (1981) we have found exact solutions to such a 
model. Since the model contains quadratic and linear curvature terms in the action we 
will refer to it as an Einstein-Cartan-Yang model although our modification includes a 
cosmological term. Formulated as an SL(2, C) gauge theory, the model yielded 
solutions under a simple double duality hypothesis that involved the curvature 2-form. 
We showed that such vacuum solutions, both with and without torsion, do not fall into 
the vacuum Einstein class. We learnt subsequently that similar solutions, involving 
torsion in the absence of matter, had been discovered independently by Baekler e? a1 
(1980) using a similar double duality approach. However in that case their model 
appears very different, involving in addition a quadratic torsion term and no explicit 
cosmological term in the action. At a more fundamental level we are instructed by these 
authors to regard their formulation as a ‘modified Poincar6’ gauge theory of gravity 
(Hehl 1979, 1980). In this paper we investigate their field equations to see if they are 
also satisfied by our solution to the Einstein-Cartan-Yang system. We are also 
prompted to discover the intrinsic nature of the ‘modified PoincarC’ gauge approach 
and compare it with our formulation of their model. 

In 0 2 we take the action of Baekler et aZ(1980) and reformulate it in an SL(2, C) 
gauge invariant manner and derive the coupled set of SL(2, C) gauge covariant field 
equations. Since the solutions under discussion are static and spherically symmetric we 
derive the form of the most general static spherically symmetric torsion using tech- 
niques based on Lie differentiation with respect to vector fields on space-time that 
generate SO(3). Using our double duality condition we then show explicitly that both 
sets of field equations are satisfied by our solution. Since this solution has a torsion that 
is not SL(2, C) gauge equivalent to those presented by Baekler et a1 (1980) we must 
conclude that this particular action (like the Einstein-Cartan-Yang model in Benn et af  
(1981)) does not admit unique static spherically symmetric solutions with non-vanish- 
ing torsion. Throughout this section we make explicit use of the SL(2, C) covariance to 
choose a gauge that is very suited to spherically symmetric field configurations. 

In 8 3 we describe briefly the concept of the linear frame bundle over space-time and 
show that the infinitesimal ‘modified Poincar6’ transformations can be understood as 
local Lorentz transformations combined with a Lie derivative with respect to an 
arbitrary vector field on M. In view of this we are persuaded to argue that the latter 
should not be regarded as defining part of a structure group associated with a dynamic 
description of gravitation. Rather, we argue that the behaviour of particular geometries 
and other field configurations (arisingfrom a locally Lorentz invariant theory) under the 
action of particular Lie derivatives serves to indicate their symmetry under diffeomor- 
phisms on M. In 5 4 this viewpoint is contrasted briefly with the closely allied concept of 
a Cartan connection (Kobayashi and Nomizu 1969) on the affine frame bundle. 

Our arguments are summarised in the conclusion. 
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2. 

A manifold M, such as space-time, is defined in terms of its topology, its atlas of charts 
and the smoothness properties of maps between them. The primitive requirement of 
the coordinate independence of physical laws can be accommodated by formulating 
theories in terms of tensors on M. In the first part of this section we work entirely with 
real valued differential forms on M and explore solutions in a local chart of M. The 
latter subset of all tensors plays a prominent role since the theories under discussion are 
generated from an action integral on M. Differential 4-forms can be integrated over a 
4-chain in a coordinate independent manner. 

The action of Baekler et a1 (1980) can be rewritten in terms of the 4-form 

A = kRab A * Rat, +iT" A * Ta -$a A * a a, b = 0, 1 , 2 , 3  (1) 

and the usual summation convention is operative with latin indices here raised and 
lowered with the matrix Tab = diag(-1, 1,1,1). k is a real constant and for convenience 
we shall use the abbreviations a = iaTa, U" = a A e a  where the interior derivation is 
with respect to the dual frame 

(2) 
(Those unfamiliar with i, will find its general definition in 0 3.) The space-time metric g, 
torsion 2-forms T" and curvature 2-forms Rab are given by 

b b  iae = Sa. 

3 

k = l  
g = - e o B e o +  C e k B e k  (3) 

T" = de" + A e b  (4) 

( 5 )  

in terms of the metric compatible connection l-forms @ab = -Wba and * denotes the 
Hodge dual map. 

The real form field equations that follow from this action by varying ea and W a b  are 
respectively 

b Rac=dwac+Wab A 0  

D * ( Ta + U,) = ${i,Tb A * T b  - T" A i ,  * Tb} + ${iaa A * + A i ,  * a}+ i,Tb A * a b  

- U b  h i ,  * T b - a  A * Ta + k[i,Rb' A * Rbc -Rbc  A i ,  * R k ]  

4kD * R a b +  T' A * (e" heb  Ae,)=e" Aeb A i, * T'. 
(6) 

(7) 
In these expressions D denotes the appropriate SL(2, C) exterior covariant derivative. 

At this point, to compare with the language used in our earlier paper (Benn et a1 
1981), we recast these equations into a complex quaternionic form. This is most readily 
accomplished by making variations in the action written in terms of the anti-Hermitian 
(Tucker 1981) quaternionic 2-form T = iTo+x2=lTk& and the complex quaternionic 
2-form 2 = R kf?k. The i?k are three elements that generate the quaternion algebra. 

A =  -8k Re S[k A * &]+3S(T  A * F)-$a A * a. (8) 

The quaternionic field equations corresponding to (6) and (7) become 

D * ( T + ~ ) + $ { u x T a A * T a - T a A U x * T a } + ~ { U ~ A * * + ( Y A u x * ~ }  

-a A * rT+ u ~ T "  A * U, -c" A ux * Ta + 8 k ~  = 0 (9) 
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16 k D  * 8 + D ( e  A E )  = ( e  A E )  A p. (10) 
We have introduced 

3 

k = l  
e = i e o +  e k 2 k  

3 

k = l  
ux = iio+ i k t k  

a = -S(uxT)* 

p = -S(ux * T)* 
3 3 

r = i r o +  k = l  1 ?kf?&=2& { k = l  u x R k ~ * R k + + u x S ( d ~ * d ) ] .  

In terms of real forms 

(14) 

are the four stress 3-forms associated with the first term in the action. (NB a right 
superscript * denotes complex conjugation.) 

1 bc 
?a = -g[iaR A * Rbc -Rb' A io * Rbc] 

Equations (7) or (10) are solved immediately if one adopts the conditions 

p = 0  (17) 

(18) Rab = -1 cd 1 

provided the constants satisfy kh = 1. The second condition can be recognised as the 
modified double duality used by us in Benn et a1 (1981) 

(19) 

To see that (10) is solved one simply applies an exterior covariant derivative to this 
equation and uses the Bianchi identity Dk = 0. 

To solve the frame variation equation is more involved and one must exploit static 
spherical symmetry of a geometry containing torsion. 

In order to make this constraint precise we employ the notion of a Lie derivative 9,x 
with respect to a vector field X on M. We first establish coordinate functions (t, r, 8,4)  
which define a coordinate patch on M by giving them values in R4 satisfying 

2Eab * Rcd -Thea A e b  

R = i * R +Ahe A E. 

O < t < a  O < r < a  o a e < -  064 <2v. (20) 

The metric is static and spherically symmetric if the four vector fields 

a 
Yo=% 

a a 
a8 a 4  

Y1 =-sin q5--cos q5 cot 8- 

a a 
YZ = cos 4 --sin 4 cot 6- 

a e  a 4  
a 

Y 3 = g  

define a Lie derivative that annihilates g 

9 y i g  = 0 i = 0,  1,2,3. (22) 
The vector fields Yly  Y2, Y3 generate the Lie algebra of SO(3) which acts as an 
infinitesimal transformation group on M. In terms of these coordinates one readily 
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verifies that the four coframe forms 

eo = ho(r) dt e' = hl(r) dr e2 = h2(r) d8 e3 = h2(r) sin 8 d 4  (23) 

provide an orthonormal basis for g satisfying (22) where ho, hl, ha are arbitrary real 
functions of r. 

A dual frame {Xi} defined by e'(X,) = 8; is given by 

l a  
x3=-- 

i a  x,=-- 
ho at hl ar hz ae ha sin 8 a4 

i a  xa=-- i a  xl=-- 

which satisfy 

2'y1X2 = -cos (b cosec 8 X3 

Z , X 3  = cosec 8 cos 4 X2 

Zy2X2 = -sin q5 cosec 8 X3 

ZyzX3 = sin (b cosec 8 X2 

with all other Lie derivatives zero. The complete geometry is said to be static and 
spherically symmetric if the Lorentz gauge invariant torsion (1,2) tensor 

(25) 

T= T" OX, (26)  
obeys 

2'xa = 0 i = 0, 1,2,3. 

One readily computes that this implies 

T0=AeoA e'+Be2r\ e3 

T 2 = E e o ~ e 2 + F e ' ~ e 3 + G e '  h e 2 + H e 1 ~ e 3  

T3 = Ee' A e3 -Feo A e' + Ge' A e3 - He' A e' 

T' = c e  O A e ' + De A e 

(27) 

where A to H are real functions of r alone. The coordinate reflection (t, r, 8, 4)+ 
(t, r, rr -8, rr +4) induces the frame reflection (e', el,  ea, e3)+ (e', e', -e2, e3) which 
may be used to partition the eight functions into two sets depending on the nature of the 
behaviour of their associated basis 2-forms under this transformation. 

To simplify subsequent calculations we shall now exploit the Lorentz gauge freedom 
to select a polar gauge that is particularly suited to the spherical symmetry. We seek a 
gauge transformation with the property 

(29) 

cos 8 + e*:! exp(-g1q5) sin 8 is a real unit q vector (NN = 1) and 

QQ+=I  Q&d = N Q&d = UN ( 2 . 2 3 0  = U (30) 

e +i? =iho d t +  hlN d r +  ha d N  = QeQ' 

where N(8, 4) = 
Q E SL(2, C). This requires that the local gauge rotation Q obey 

where U = e^3 exp(-&d). By explicit calculation 

Q = exp($&4) exp(3t38) (31) 
and corresponds to an SO(3) rotation. Thus we can compute the torsion 2-form in the 
new gauge 

= QTQ' = iA y )  dr A dt + A $-) dr A N d N  + A  $-) dt A N d N  

+A!,-' d N  A d N  +iB!-'N d N  A d N  + Br '  dr A dN 
+BPI dt A d N + B y '  dr A d t N  (32) 
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and the superscripts on the components indicate the behaviour under the frame 
reflection above. These components are related to the functions in (26) by 

Ai-) = 1 2 A ~ ) = A  A $-) = - rH/ ho Ai-’ = -rh$ 2r D 
(33) B(-)  - - -2r  1 2 B B:‘” = rG/ho BF) = rhoE BY’ = -C. 

It is also very convenient to rotate the interior operator into this gauge. We find 

where 
j _ *  
I - l a f a t  i, = iaIar 

and ;N obeys 

?;J-(dN)=-1 LN(N dN)  = N LN(dN dN)  = -dN 

LN(N d N  dN)  = N dN. 

Since the single 4 vector N now replaces the 6, q5 dependence we give the duality 
relations in the polar gauge 

* 1 = - 1  2h2hohl 2 dr  Adt A N d N  d N  = e‘ A e2 A e 3  A eo 

* dr  = -$hz(ho/hl)N d N  A d N  A dt 

* d t = - d  2hz(hl/ho)N d N  AdN A dr 

* (dN A d N )  = T h o h l  dr A dt 

* (dr A dN)  = -(ho/hl)N d N  A dt 

During subsequent calculations we repeatedly use the fact that N dN A d N  is a real 4 
scalar while N, N dN, d N  and d N  A d N  are all real 4 vectors. We shall leave the over 
tilde understood in the polar gauge. 

Returning to the solution of (9) we recall from Benn et a1 (1981) that the solutions 
therein corresponding to the action 

(36) 

* d N  = hohlN d N  Adt Adr 

* (dr A dt) =- h,’ N d N  A d N  

* (dt A dN)  = -(hl/ho)N d N  A dr. 

(35) 
2 N  
h2 2hoh1 

h = -Re S(2R A * R +i(2/A)R A e A I?+i$h-‘e A Z A e A I?} 
are 

c kr2 -’ 
dt  0 dt +dr  0 dr( 1 + ;+y) + r2(dB 0 d e  +sinZ 0 dq5 0 d 4 )  

(37) 

where A, c and k are arbitrary real constants. 
We consequently assume a solution to the field equation (9), (10) of the form 

e = i h o d t + N d r / h o + r d N  (39) 

2if0 T =-dr A dt 
ho 

140) 
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where fo and ho are real functions of r. With the aid of the structure equation 

T = de + 2d(D A e) 

the corresponding SL(2, C) connection is 

D=i (po+fo )Ndt+p lNdN 

with 

p o  - ihoarho pi=$(ho-l). 

We may now compute 

d = dD +& A 6 
= id, ( po + fo)N dr  A dt - iho( p o  + fo) d t  A d N  

+ h h o  dr A N dN+a(hz- 1) d N  AdN 

e A C = 2iN dr A dt-2irho d t  A dN-(2r/ho) dr  A N  dN-r2  d N  A d N  

i * d = (i/2rZ)(h; - l ) N  d r  A dt  -$hg&ho d N  A d N  

+ h i l ( p o + f o ) d r ~  N dN+ar(po+fo)$r2dNAdN. 

Substituting in the modified duality condition (19) gives the differential equations that 
must be satisfied 

(46) 

(47) 

po + fo + krA = $ho&ho 

arpo + ar fo  + +A = (h ;  - 1)/2r2 

ho = (1 + A/r  + Br2)"2 

fo = (B - ;A ) r - A/2r2 

with solutions 

(48) 

(49) 
where A and B are arbitrary integration constants. Thus the ansatz (39)-(40) solves the 
equation (10). It is now straightforward to calculate the terms that enter into (9) using 
the polar gauge 

(50) * T = (ifo/ho)r2N d N  A d N  

a = -(2fo/h;) dr (51) 
* a = r2f0 d t N  d N  AdN 

U = -(2ifo/ho) dr  A dt - (2for/h;) dr A d N  

* U = -i( for2/ho)N d N  A d N  + 2forN d N  A dt. 

(52) 

(53) 

(54) 
With the aid of ux we find 

u x T a * T , - T a u x * T a + ~ ~ ~ + a  

faux * +2uxTa h * U, - 2 ~ "  A u x  * T, -2a  A * p=O. ( 5 5 )  
Now 

D * ( ~ + c 7 ) = d * ( ~ + c 7 ) - 2 1 ( * ( T + c ? ) ~ & )  

= [A/r2+4r(B -b)] dr  A dt A N dN-2rf,hodt A d N  A d N  (56) 
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and this term must be balanced by the remaining stress forms in (9) 
3 

k = l  
T =  2d(uxRk~*Rk)+d(uxS(&~*R)) 

where 

R 1  = -S(RN) R 2  = -S(RUN) R 3  = -S(RU). 
Thus 

AA rA 
8r2 8 7 = (--+-(.&A -B) dr A dt N A dN + 

Ar2 
+i  -(;A -B) dr A N d N  A dN. 

16ho 

(57) 

Equation (9) is consequently solved if we set B = ;A. Thus by suitably adjusting the 
constants we find that our previous solution (37), (38) 

-1 

dt 0 dt + dr 0 dr 1 + ?’(de 0 d8 +sinZ 8 d#J 0 d#J) ( r 8 k  

A r2 -112 

T n  = -Ar-2( 1 +-+-) dr A dt 
r 8k 

T~ = Q  k = 1 , 2 , 3  

also solves exactly the field equations based on the action (8). The most general 
expression for static, spherically symmetric torsion 2-form with positive reflection 
symmetry is 

(61) 

where fo, fl,  fz, f3 are real functions of r alone. The corresponding (q-vector valued) 
contortion l-form 

T=(i2fo/ho)dr~dt-2hoflN drAdt+2h0fidt hdN-(2f3/ho) dr AdN 

k = i f & d t + i f l N  d r+ i f2dN+f3NdN (62) 
defines the torsion T = 2 d ( k  A e). 

l-forms, determines the curvature 2-form 

R = -i(po+fo)(l+2pl+2f3) dt ~dN+i (a ,p~+a , fo )N d r ~ d t  

This ansatz, together with the expression (39) specifying the ansatz for the basis 

+[(I + ~ i + f ~ ) ( ~ i + f ~ ) - f ~ I c W ~ d N - 2 ( p o + f o ) f z d t ~ N d N  

-i[ f l ( l +  2p1+2f3) -a,fz] dr A d N  + +a,f3-2f1 f2) dr A N  dN. 
(63) 

When this expression is substituted in the modified double duality condition R = 
i * R -&he A Z, the following set of ordinary differential equations is obtained: 

(pn+fo)(l+ %/hn> +QAr = &ho(aho+ 2&f3 - 4 f h )  

 PO +fo)fz = h$&fz -fi(ho + 2f3)I. 

arpo + a,fo + QA = $r-’[(ho + 2f3)2 - 4fg - 11 (64) 

(65) 

(66) 
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Besides the solution given above (determined by the assumption fo # 0, fi = f2 = f3 = 0) 
there are two other distinct solutions. They are specified by the metric function 

(67) 
together with the functions 

Case I fo = - A / 4 r 2  fl = A / 4 r 2 h i  f2 = -A/4rh0 f3 = -A/4rh0 
(68) 

and 

Case I1 fo = -A/4r2  fl = - A / 4 r 2 h ~  f2 = A/4rh0 f3 = A/4rh0 
(69) 

respectively. These latter solutions correspond in this gauge to those discovered by 
Baekler eta1 (1980) and were shown to satisfy the frame variation equations (6) as well. 
It should be noted here that the solution (59)-(60) presented previously in detail meets 
all the criteria Baekler et a1 require their solutions to satisfy and was in fact overlooked 
in their paper. We also find it interesting to note that all these three cases constitute 
distinct solutions to the field equations of the Einstein-Cartan-Yang theory with a 
cosmological term (Benn et a1 1981). We have not investigated solutions to either 
model corresponding to the most general spherically symmetric static torsion. 

ho = (1 + A/r  + Br2)1’2 

3. 

In this section we consider the nature of the ‘translations’ that Baekler et al (1980) 
describe as being gauged. Our use of tensors on M in the previous calculation explicitly 
accommodates the notion of coordinate independence regarded as relabelling con- 
ventions for points on M. However the notion of general coordinate transformations 
has also been identified with the concept of local diffeomorphisms on M which describe 
the motion of its points under a smooth 1-1 mapping. These concepts must be clearly 
distinguished. In the former case h : R4+ R4 is a diffeomorphism between local charts, 
each of which gives a definite coordinate label to the same point of M. In the latter case 
f: M + M maps the manifold smoothly onto itself. Since this map is specified by its 
representation in local charts (which may coincide) there is room for ambiguity unless it 
is clear from the context which case is being considered. Baekler et a1 (1980) clearly 
have active diffeomorphisms M + M in mind which they refer to as translations. 

In Minkowski space there exists a privileged global coordinate system (t, x k ,  E R4 in 
which the space-time metric takes the form 

3 

k = l  
g = - d t O d t +  dXkOdxk. 

The PoincarC group, realised as a transformation group on M, is a symmetry of g. It 
consists of ten infinitesimal generators Xi E TM with the properties 

.Y&g = 0. (71) 

Xi = coa/at (72) 
x, = eka/ax k=1 ,2 ,3nosum (73) 

The four pure translation generators take a form 
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where in these coordinates the eo, &k are constants. Such vector fields generate a 
diffeomorphism of Minkowski space onto itself given in a global chart by 

t + f + eo xk + Xk + F k  (74)  

which by (71) is an isometry. Under a coordinate relabelling (71) is still valid of course, 
but the vector fields no longer need to have constant functions for their components in 
the new coordinate basis. Vector fields with constant components in arbitrary coor- 
dinate bases do not generate isometries in Minkowski space. What then is the role of a 
set of arbitrary vector fields in a space-time with an arbitrary metric? 

The notion of a gauge transformation means different things to different authors. 
Most physicists use of the gauge principle stems from the belief in the local indepen- 
dence of certain transformations. From a pragmatic viewpoint i t  is related to the 
existence of covariant (or invariant) expressions that compare objects a! distinct points 
in space-time. This has led to the construction of intrinsic derivatives in terms of maps 
that provide meaningful ways of comparing tensors at different points. 

Given an arbitrary one-parameter group of diffeomorphisms 4,: M + M one can use 
its generator X(where X, is tangent to an integral curve through p E M )  to perform Lie 
differentiation on an arbitrary tensor W 

z X w  = l im(W-&W)/t  (75) 
1-n 

where 6, W is the action on W induced by 4,. This gives information on the behaviour 
of different types of tensor induced by such a diffeomorphism. I t  is a fundamental 
method of differentiation and requires the existence only of a differentiable manifold 
and a local vector field. In particular it exists in the absence of any geometric structure 
on M. It is for this reason that we would argue that its role be distinguished from 
higher-level methods of differentiation that require extra structure such as a metric and 
linear connection. In the context of space-time it is the latter constructs that we identify 
with the gravitational field. Although we do not deny the great utility of the Lie 
derivative in describing the evolution of the gravitational field, the basic geometry of M 
is to be found in terms of structures on the linear frame bundle (Kobayashi and Nomizu 
1969, Schmidt 1974, Trautman 1980). 

On any manifold a frame U at a point p E M is an ordered basis of tangent vectors 
{ X , }  associated with that point. The set of all frames will be denoted here by LM and 
Kobayashi and Nomizu (1969) indicate how this space may be endowed with the 
structure of a principal fibre bundle over M with Gl(4, R )  as structure group if M has 
four dimensions. If {xu} coordinates points in a region U c M them one may take the 
4 + 16 numbers {x*, e : }  as the coordinates of a region n - ’ ( U ) c  LM where all indices 
run  from 0, 1,2,3 and using the summation convention 

X ,  = e:a/aX’ (76)  

relates the natural coordinate vectors a/dx’ to an arbitrary frame X ,  by the matrix 
elements of Gl(4, R). Under A E Gl(4, R )  

(xu, e:)+ (xu, e’;A:) (77 )  

gives the group action on LM in these coordinates. A passive M coordinate trans- 
formation that relabels p E M 

x k  + x k  ( x )  (78 )  
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can induce a particular Gl(4, R )  transformation with matrix 

A: = axrk/ax ’, (79) 

This corresponds to re-aligning the old frames at each point of M to be tangent to the 
new coordinate curves. By ‘lifting’ structures from M into LM insight can be gained 
into their frame dependence. Since a local diffeomorphism f : M + M  induces a 
mapping f* : 234 + 734, any vector field X on M acquires a natural lift into LM. In the 
LM coordinates (x”, e:) the field X = E”(x)a/ax” on M is lifted into 

on LM under the one-parameter local diffeomorphism with representation x’I + 
x”  + ~ ” ( x ) t + O ” ( t ~ ) .  The action of X on tensors on M can (Kobayashi and Nomizu 
1969) be neatly formulated in terms of the action of 2 in LM. 

The geometry of M is defined in terms of a standard smooth choice of basis field in 
T(LM).  The Gl(4, R )  fibre is spanned by 16 so-called vertical vector fields ETr E 
uT(LM) which have a Lie algebra isomorphic to the Lie algebra of Gl(4,R). The 
remaining four dimensions are spanned by particular horizontal vector fields Bk E 
hT(LM). This decomposition is specified by a Gl(4, R )  valued connection 1-form w on 
LM such that in the vertical basis ETr the 16 real forms wik obey 

uXu =wik(Xu)Erk (81) 

for any Xu = OX,, + hXu E T,(LM). In addition to these 16 real 1-forms the description 
of the basis in T,(LM) is completed by specifying four canonical 1-forms 6“. Under the 
projection T* induced from 

T :  LM+ M, ( p ,  Xi) + p  (82) 

these are defined to satisfy 

Tr*(X,) = 6’(XU)x/ .  

These forms and fields are chosen to satisfy the complete duality properties 

w ‘k (ET‘) 8:s 

w ik  (B,) = 0 

6’(Bk) = 6: 

ei(E$‘)  = 0 .  

If we introduce the inverse vierbein E: satisfying 

ELey = 8: (88) 

and regard it as a function of the ey then in the specified coordinates of LA4 we may 
verify 

(89) 

6’ = E l  dx’ (90) 
where rEV are a set of 64 functions on M that specify a Gl(4, R )  connection in these 

w k =EL der +EfLrEv(x)e; dx” 
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coordinates. In terms of the familiar covariant derivative on M 

Now just as an arbitrary vector field on M could be given a natural lift 2 into LM one 
can give it a distinct 'horizontal lift' X so that the lifted vector field lies in the horizontal 
subspace fixed by the connection in LM. The condition w ( a / a x " )  = 0 gives in our 
working chart 

- 
3 

Thus there are two fundamentally distinct methods of differentiation with different 
geometrical interpretation on LM. The first requires a vector field associated with a 
one-parameter diffeomorphism on M for its specification, the second needs a linear 
connection on LM. Since the latter is associated with the geometry of M, particularly 
when we introduce a metric, we argue that it shouid have a unique correspondence with 
a dynamical formulation of gravity. The former is a tool that is independent of 
geometry and may be used in analysing any physical field configuration over M. 

In terms of the standard basis on LM we can calculate 

[E:*, E:,'*] = S:,E,k'* - SSE,k* (93) 

[E:', Bk]=S;B,  (94) 

and the system is closed if we introduce the functions f I k ,  ;:,k on LM by 

[B,, Bk] = - f#k'BI - zlkrsETS. 

2, k - -  - - : ~ I m ' k 6 i A $ m = d w ' k f w 1 , / \ W i , ,  

? ' = $ f i m 1 8 ' A  8" = d e l + W 1 k  A e k  

(95) 

These structure equations can be equivalently formulated in terms of the forms U ' ,  and 

(96) 

(97) 

which are the curvature and torsion 2-forms describing the geometry. In a particular 
local gauge (T 

cr:M+LM (xw)-*  ( x w ,  e,"(x)) (98) 

e k  

we have written 

as the iorms that enter in our actions on M. Before this choice of local gauge section it is 
important to notice that the role of the vierbein (and its inverse) is a set of coordinates. 
After the gauge sectioning it defines a function on M. Since the pull back U * :  A*(LM) -* 
A*(M) commutes with d, the structure equations appear as the usual definition of R and 
T on M. 
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Up to this point our discussion has been in terms of an arbitrary connection in LM. If 
the manifold M is endowed with a metric g in TM we can construct g-orthonormal 
frames. The bundle of g-orthonormal frames OM is a sub-bundle of LM. If the metric 
has a Lorentz structure (i.e. eigenvalues -1, 1, 1,l) then OM has the structure group 
SO(3,l)  which is contained in Gl(4, R). A linear connection in OM is called a metric 
connection since it controls the parallel transport of frames that stay in OM. Restricting 
Gl(4, R )  to the proper Lorentz group one may compare the structural algebra (93), 
(94), (95) with the algebra that Hehl calls a modified Poincar6 group. In our approach 
this algebra defines the structure of the orthonormal frame bundle of M. 

It is most important to realise that a metric connection in OM induces naturally a 
Gl(4, R )  connection on M. Thus given v X a x b  = r:aC where {X,} is a g-orthonormal 
frame then 

=E;{X,(EE)Xb +EEr:ac}= r",a/ax". ( 103) 

We henceforth restrict to a metric compatible connection and work in OM with the 
proper Lorentz group as structure group. A dynamical theory of gravity will be 
expected to specify a connection in the Lie algebra of the Lorentz group together with a 
field E ;  (x) that relates the g-orthonormal coframes e a to arbitrary coordinate coframes 

e"=E;(x)dx". (104) 

Since these are g-orthonormal the Lorentz metric follows as 
3 

k = l  
g = - e o m e o +  e k O e k  

and is preserved by the structure group of OM. Although we do not discuss fermions in 
this paper their existence in finite dimensional representations of SL(2, C) necessitates 
consideration of the group that covers SO(3,l). It is for this reason that we enlarge our 
picture to the bundle of spinor frames over M and refer to our formulation as an 
SL(2, C) gauge theory of gravity. The existence of self-gravitating fermion fields is one 
of the strongest motivations we have for regarding SL(2, C) to be the appropriate 
structure group in the frame bundle. 

Next let us examine 9d" and 9 ; ( o a b  as 1-forms on M taking X to be an arbitrary 
vector field on M with orthonormal components e"(X) = X". For this purpose it is 
useful to introduce the operator ix where for any p-form a, i x :  A' + A'-' 

(im)(Yl, Yz,. . . , Y . - d = p ~ ( X ,  YI,. . . , YP-d V xi. (106) 
We can then use the identity 9x = ixd + dix on forms. Thus 

9 ~ "  = ix de" + d i d "  

= i x ( T a - u a b  Aeb)+dXa 

= ixT" - ( i f l a b )  A eb + u a a b  +dX" 

but 
a c  iNab = ix(uc, be ) = uC,"ac = E "b 
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since the connection is metric compatible. Thus (ixwab)eb = Eabeb zs Spb is the varia- 
tion induced in e by a pure infinitesimal SO(3,l) gauge rotation with a particular set of 
parameters &Ob. Thus we may write 

9fi"=ixT"+DX"-6g".  ( 108) 
Similarly 

9;(oab = ix dwab +diflab 

= ix[Rab-wac ~ w , b ] + d ( ~ f , " ~ X ~ )  

=ixRab+DEab (109) 
where we have set cab = U ~ , " ~ X '  and DE ab = dEab - E - E bfw"f. Again we recognise 
DE Ob = -a& ab as the variation induced in the connection form by the same infinitesi- 
mal SO(3,l) gauge rotation. 

At this point we can make contact with the transformations in Hehl(l979, 1980). 
The necessary correspondence is afforded by 

E' = Zxe" = S e i  dx' 9 x 0  " b  e 60p,ab dx ' 
(110) 

T" =$TClwa dx' Adx" 

(107) and (109) then become 

Rab = &&/b dx' A dx" D = dx'Q,. 

s e i  = ~ c r E a + E Y T w ~ a - E a b e ~  (111) 

6WcLab = V w E  ab + E "RVcrab. (1 12) 
Apart from letter conventions these correspond to what Hehl(l979,1980) terms pure 
'modified PoincarC gauge translations'. If we add to the particular parameters E " b  a set 
of six arbitrary parameters the above transformations may be interpreted as the 
component expressions for 

I ~ x  + 6~0(3,1&" (113) 

[ZX + & i 0 ( 3 , 1 ) h a b  (1 14) 

and 

where Ss0(3,1) denotes the combined infinitesimal SO(3,l) gauge rotation. Thus these 
transformations have their origin in the behaviour of the fundamental structures e a and 
Wag, associated in a certain gauge within LM, under the combined effect of an arbitrary 
diffeomorphism on M and a local Lorentz transformation. 

To what extent do these transformations yield a covariance of a physical theory of 
gravity? To accommodate the principle of independence under coordinate labelling 
any field theory can be generated from a 4-form action density A. If the manifold over 
which it is integrated is closed, or if appropriate boundary conditions are imposed, then 
the action is invariant under arbitrary diffeomorphisms on M. This follows since 

A = 3'~ A = ( ix dA + dix A) = lM dix A = iM ix A = 0 ( 1 1 5 )  

where we use the fact that no 5-forms exist on M. Since this argument is valid for any 
4-form action we do not believe 9x should be identified with a gauge structure for 
gravity in the same way as 8S0(3,t). Whether the action is invariant under this 
transformation, Sso(3,1) j M  A = 0, depends on its construction of course. To construct an 

9xIM I M  
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invariant action out of a linear connection in OM and the canonical forms (together 
with possible sections of bundles associated with LM) is in our view the simplest 
possible metric compatible formulation of gravity that generalises the original torsion- 
free formulation. It makes precise the notions of Cartan (1922) which are beautifully 
adapted to modern concepts in differential geometry. By comparison with the gauge 
theories of internal symmetries over M the theory is naturally regarded as a Lorentz 
group gauge theory of orthonormal space-time frames. The fact that we have recast the 
particular model of Baekler e? a1 (1980) into this language re-enforces our opinion that 
the role of arbitrary diffeomorphisms on M via the transformations (113), (114) is 
simply a way of classifying e" and mab consistently with the structure equations (96), 
(97) of the frame bundle. 

4. 

In this section we mention briefly a particular Cartan connection in the bundle of affine 
frames (Kobayashi and Nomizu 1969, Trautman 1973) over M that has often been used 
to interpret the linear connection in LM. In the language of gauge theory establishing a 
Cartan connection corresponds to gauging the PoincarC group by constructing a 
horizontal subspace in the bundle of g-orthonormal affine frames. An affine frame of M 
may be identified with a linear frame together with a point in the tangent space of M 
regarded as an affine space. This means that the vector V, E T f l  with components 
{ V,} E R4 responds to the affine transformation 

where A E Gl(4, R), b E R4 by 

and the affine group structure is obtained by multiplying the above matrices. One may 
visualise the affine transformation as linearly transforming the general linear frame and 
translating its origin in the tangent space to each point of the manifold M. Kobayashi 
and Nomizu (1969) show how the set of all affine frames may be turned into an affine 
frame bundle AM. Fixing a connection in the sub-bundle of g-orthonormal affine 
frames naturally induces an affine connection on the complete bundle. A Cartan 
connection in AM is a particular choice of affine connection that relates it to the linear 
connection in LM, the canonical l-forms 8" and the origin vector V. With this affine 
connection the curvature associated with the translational generators generated by b is 
related to the torsion in the linear frame bundle and the Gl(4, R) (or SO(3, 1)) covariant 
derivatives of V. 

If the structure group of the affine bundle is reduced to the linear group by fixing the 
origin of each affine frame firmly then, and only then, can we identify the translational 
connection with the canonical forms 8" of LM and the translational curvature with the 
associated torsion. The affine symmetry is broken down to Gl(4, R) or SO(3, 1) and the 
affine bundle reduced to LM. This point appears to have been overlooked by recent 
proponents (Cho 1976, Hayashi 1977) of translation and PoincarC gauge description of 
gravity. To our knowledge there is no evidence in any theory of gravity of the fully 
gauged PoincarC symmetry group. 
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It is sometimes said (Schweizer er a1 1980) that a knowledge of the forms (e", Wab = 
-wb.) determines a PoincarC gauge connection. They also determine a connection in 
LM and in any bundle with SO(3,l)  as a subgroup of its structure group that can be 
reduced to LM. Consequently we believe that the status of the gauged Poincare group 
is elusive in current models of gravitation and its theoretical role in interpreting 
(e", onb) be clearly distinguished from the role played by the Lorentz group as a local 
covariance group for gravitation. A more complete description of the affine frame 
bundle, generalised to accommodate supergravity, can be found in Tucker (1981 1. 

5. Conclusion 

In this paper we have computed a new solution to the model of gravitation introduced in 
Baekler er a1 (1980). The model has been discussed in Lorentz gauge covariant terms 
and the local symmetry exploited with the introduction of a convenient gauge in which 
the calculation was performed. However, Baekler ef  a1 (1980) have stnwgly advocated 
a description in terms of a 'modified PoincarC gauge group'. This description appears to 
be motivated by the apparent similarity of the Poincard Lie algebra with the algebra of 
'local P-transformations'. Unlike the Lie algebra of a structure group however this 
involves functions that vary with the geometry. In § 3 we have indicated how these 
relations arise as the structure equations of the linear frame bundle and should be 
regarded as providing a definition of the curvature and canonical forms. The local 
P-transformations of the 'modified PoincarC gauge potentials' are not canonical. 
However, we have identified them with a combined local Lorentz transformation 
generated by the action of the Lorentz structure group coupled with a Lie derivative 
action with respect to an arbitrary vector field on M. We prefer to dissociate the later 
transformation from any specific gauge interaction. 

By formulating the classical laws of physics as relations between tensors and certain 
tensorial operators over a manifold, one can immediately generate laws relating their 
diffeomorphic images. Comparing tensors with their images under diffeomorphisms 
provides a succinct tool for the description of symmetries. Indeed we have exploited 
such techniques in 9 2 where a spherically symmetric stationary geometry with torsion 
was defined. We also defined the PoincarC generators in terms of an infinitesimal 
isometry of the Minkowski metric with the aid of Lie derivatives. We stress, however, 
our contention that the tensorial formulation of physical laws and their behaviour under 
arbitrary diffeomorphisms should not be unique to any theory of gravitation. 

Once the linear frame bundle LM has been adopted as the central concept in a 
gauge theory of gravity, one recognises its sections as gauge choices for the theory. An 
arbitrary change of gauge can be generated with an arbitrary vector field on LM and (at 
least locally) repositions the gauge section. If one uses as vector field the lift 2 of a 
vector field X on M then LM has the characteristic that 

9H" = O  V R  (117) 
This follows simply in a local chart of LM from the expression given for 2 in (80) and 
equation (90) for 8'. However, given a connection, 9 , w " b  only vanishes for special 
fields Y? and these define a class of affine symmetries on M. 

For the purposes of constructing gravitational interactions with other fields the 
modified P-gauge approach claims to lead unambiguously to a minimal coupling 
procedur'e (see e.g. Hehl 1979, Lecture 3). In our approach all tensor and spinor fields 
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(including the gauge fields of other interactions) are classified under the Lorentz group 
(Benn er a1 1980). In principle there is no reason why a non-minimal coupling (for 
example between gravity and electromagnetism) should not occur that respects all local 
gauge covariances. An example of such an action 4-form would be Rub A ib(icF * Rca) 
where F is the U(l) invariant electromagnetic field 2-form. Similar interactions have 
been discussed in the literature (Prassana 1971, Horndeski 1976) and are fully 
consistent with our gauge approach. 

Finally we remark on the important relation between space-time symmetries and 
conservation laws. The so-called ‘covariant conservation laws’ that follow from the 
invariance of the matter action under local Lorentz transformations and arbitrary 
diffeomorphisms on M are not really conservation laws, but rather consequences of the 
structure equations and the dynamical equations satisfied by non-gravitational fields. 
They are valid in arbitrary background geometries and place no restriction on the form 
of the background action should one wish to consider dynamical geometry. However, if 
the space admits symmetries generated by X on M such that 9 x T  = 0, LfXg = 0,  these 
identities lead to the existence of closed 3-forms (Benn 1981). For a Minkowski 
background with its ten-dimensional PoincarC symmetry these give rise to conserved 
angular momentum and momentum densities. Hehl and others have argued that since 
the conservation laws for angular momentum and momentum in special relativity result 
from global invariance under the PoincarC group this group must be fundamental to any 
gauge approach to gravity. Such theories, including Einstein’s, treat the geometry as 
dynamical and provide field equations for the metric and connection. Minkowski space 
(with T = 0) is usually required to be one solution of the source-free equations. Since 
the Conservation laws of special relativity follow from the global invariance of the 
Minkowski metric under a particular group of diffeomorphism on M, the Poincark 
group, it seems unappealing to us to tie the group structure of a dynamical theory of 
gravitation to the properties of one particular solution. 
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